что можно заказать на нашей фирме: 1. проектирование, дизайн изделий и конструкций из стекла 2. изготовление изделий из стекла: цельностеклянные, мобильные и профильные перегородки, входные группы из стекла, межкомнатные двери из стекла, лестницы со ступенями из стекла, дерева, гранита..., стойки-рецепшен из стекла, козырьки и навесы из стекла, мебель из стекла, раздвижные группы из стекла, стеклянные полы, стеклянные потолки, витражи, фьюзинг... 3. специальную обработку стекла: матирование (пескоструй), молирование (изгиб), поклейку стекла УФ-клеем, оклейку пленкой, витражной пленкой, нанесение рисунка ... 4. фурнитуру для конструкций из стекла (Casma, Dorma, HDL, GCC, Pauli, MetalGlass, ColCom, GU, GMT, Schlechtendahl, GEZE ...) для дверей из стекла, входных групп из стекла, раздвижных систем для стеклянных конструкций, душевых кабин из стекла... 5. доставку, демонтаж, восстановление, монтаж конструкций из стекла...
полная информация к новости
  • Просмотров: 1097
  • Автор: eglass
  • Дата: 26 мая 2014
26 мая 2014

СТЕКЛО

Категория: ВСЕ СТАТЬИ | глоссарий

СТЕКЛО Стекло — один из самых древних и, благодаря разнообразию своих свойств — универсальный в практике человека материал.


Физико-химически — неорганическое вещество, твёрдое тело, структурно — аморфно, изотропно; агрегатно все виды стёкол — чрезвычайно вязкая переохлаждённая жидкость, достигающая стеклообразного состояния в процессе остывания со скоростью, достаточной для предотвращения кристаллизации расплавов, получаемых в заданных температурных пределах (от 300 до 2500ºС), которые обусловлены оксидным, фторидным или фосфатным происхождением их составов. 


Первоначально так называли всем известный и наиболее распространённый продукт стеклоделия, относимый с некоторых пор в научном обиходе к силикатным стёклам.


Когда была установлена идентичность строения, состава и свойств стекла многим минералам, последние стали квалифицироваться как разновидности его природного аналога, именуясь в соответствии с условиями формирования: некристаллизовавшиеся производные быстро остывшей лавы — вулканическим стеклом (пемза, обсидианы, пехштейн, базальты и др.), а образовавшиеся из земной горной породы в результате удара космического тела — метеоритным (молдавит). 


Основным поводом к созданию искусственного заменителя — органического стекла, стало отсутствие в пору его разработки (1930-е годы) материалов, пригодных для использования в авиации — прозрачных, но лишённых хрупкости, достаточно прочных и гибких — этими качествами и был наделён данный синтетический полимер. 

В настоящее время органическое стекло уже не способно удовлетворять всем требованиям, предъявляемым ни авиацией, ни, тем более — космонавтикой, однако на смену ему пришли другие виды пластиков и новые модификации «обычного» стекла (наделённые повышенной отражательной способностью, термостойкие и прочные). 


Оргстекло (органическое вещество) по строгим физико-химическим характеристикам к своему прототипу отношения не имеет. 


История стекла (технология)

Изучающие историю происхождения этого материала когда-нибудь придут к единому мнению и относительно места — Египет, Финикия или Месопотамия, Африка или Восточное Средиземноморье и т. д., — и относительно времени — «около 6 тысяч лет назад», но характерную для феноменологии естествознания черту — «синхронность открытий», можно наблюдать по некоторым признакам и в данном случае, причём не имеет большого значения разница даже в сотни лет, в особенности, когда в реконструируемом способе варки стекла имеются существенные различия. 


Актуальность легенд, повествующих о зарождении стеклоделия, сводится не столько к историческим и этногеографическим аспектам, которые с точки зрения теории познания лишь косвенно важны, — сколько к происхождению технологии как таковой, словно отделившейся от «случайных» процессов гончарных ремёсел, и ставшей отправной точкой для создания материала с новыми свойствами — первым шагом к управлению ими, а в дальнейшем — к постижению строения. 


Существует несколько версий, одна из которых именно на этом примере делает попытку решить вопрос: что есть стекло? — Качалов предлагает: отмерять этот срок от появления поливной керамики или вообще каких-либо глазурованных силикатных изделий. 

Всякая глазурь, закреплённая на глиняном или вообще силикатном черепке, по составу представляет собой стекло, и наиболее правдоподобная версия открытия стекла как самостоятельного материала связывается с наблюдением человека над процессами керамической технологии. 

Однако глазурь на древнем фаянсе играет второстепенную роль в изделии и является материалом непрозрачным, т. е. 

она лишена главного отличительного признака стекла, а потому может называться им лишь условно. 

В изучении технологии египетского стекловарения определённых успехов добился английский исследователь А. Лукас. 

Его сведения дают следующее представление о развитии стекольного производства Египта «архаического» периода, который заканчивается IV тысячелетием до н. э.


Так называемый «египетский фаянс» (бусы, амулеты, подвески, небольшие пластинки для инкрустаций) представляет собой изделия, покрытые зеленовато-голубой глазурью. 

Отнесение их к тому, с чем ассоциируется в настоящее время «фаянс» нельзя считать правильным, поскольку отсутствует главный признак этой категории изделий — глиняный черепок. 

Известен египетский фаянс с «черепком» трёх родов: стеатит, мягкая кварцевая мука и цельный природный кварц. 

Существует мнение, что наиболее ранние образцы изготовлены из стеатита. 

Минерал этот по составу представляет собой силикат магния, он присутствует в природе в больших количествах. 

Изделия, вырезанные из куска стеатита, для получения глазури покрывались порошкообразной смесью из сырых материалов, входящих в её состав, и обжигались. 

Глазурь эта, по химическому составу представляющая собой силикат натрия с небольшой примесью кальция — не что иное как легкоплавкое стекло, окрашенное в голубые и зеленовато-голубые тона медью, иногда с изрядной примесью железа


Строение стёкол

Развитие представления о строении стекла проходит через гипотезы, объясняющие эксперименты, — к теориям, оформляющимся математически, и предполагающим количественную проверку в эксперименте. 

Таким образом понимание строения стеклообразных веществ (и частично — жидких) обусловлено совершенством методов исследования и математического аппарата, техническими возможностями. 

Выводы же позволяют в дальнейшем, совершенствуя методологию, развивать теорию строения стекла и подобных ему аморфных веществ. 


Методы исследования

Строго говоря, экспериментальные методы исследования строения стёкол насчитывают менее ста лет, поскольку к таковым во всей полноте представления о структуре стекла можно отнести только методику рентгенографического анализа, действительно, дающую реальную картину строения вещества. 

В числе первых кто начал использовать рассеяние рентгеновского излучения для анализа строения стёкол были ученики академика А. А. Лебедева, который в начале 1930-х годов первым же в СССР организовал в своей лаборатории с этой целью группу — Е. А. Порай-Кошиц и Н. Н. Валенков. 


Однако первостепенную роль не только в теоретическом аспекте вопроса, оценке термодинамических характеристик, но и в реализации эксперимента, в понимании методики его постановки, в оценке и согласовании с теорией его результатов, играют так называемые модельные методы. 

К ним относятся метод ЭДС, электродный метод и метод ядерного магнитного резонанса. 

И если первый имел применение уже на начальных этапах развития электрохимии, второй обязян своим происхождением стеклянному электроду, который нашёл полноценное применение одновременно и в качестве обекта исследования (материал стеклянного электрода), и в качестве прибора, дающего информацию не только о протекании процессов в веществе, из которого он состоит, но и косвенную — о его строении. 

Электродный метод был предложен в начале 1950-х годов М. М. Шульцем. 

В числе первых, кто начал исследовать стекло методом ЯМР был американский физик Ф.Брэй. 


Классические гипотезы

Изучение структуры монокристаллических веществ даже в настоящее время требует совершенствования экспериментальных методов и теории рассеяния. 

Теория М. Лауэ, закон Брэгга-Вульфа и рентгеноструктурный анализ идеальных кристаллов преобразовали законы кристаллографии Е.С. Фёдорова в законы, опирающиеся на понимание структуры и точных координат атомов базиса монокристалла: кинематическая — для идеального несовершенного (мозаичного) кристалла, и динамическая — для монокристалла — предоставляют значения интегральной рассеивающей способности, которые в этих случаях не пребывают в соответствии с экспериментальным значениям для реальных, значительно более сложных кристаллов. 

И для материаловедения наиважнейшими являются как раз эти отклонения от идеальной структуры, изучаемые через дополнительное рассеяние рентгеновских лучей, не подразумеваемое ни кинематической, ни динамической теориями рассеяния идеальных кристаллов. 


Дополнительные сложности возникают при исследовании структур жидких и стеклообразных веществ, не предполагающих применения даже подобия методов кристаллографии, кристаллохимии и физики твёрдого тела — наук изучающих твёрдые кристаллические тела. 


Вышеизложенные предпосылки стали основой для возникновения почти полутора десятков гипотез строения стекла, значительная часть их, опирающаяся лишь на сравнительно узкий круг свойств и закономерностей, не подвергнутых гносеологическому анализу степени достоверности, лишена первичной базы для формировнаия теории, тем не менее с эффектными названиями регулярно декларируется. 

Уже были кристаллиты, беспорядочная сетка, полимерное строение, полимерно-кристаллитное строение, ионная модель, паракристаллы, структоны, витроиды, стеклоны, микрогетерогенность, субмикронеоднородность, химически неоднородное строение, мицеллярная структура, и другие названия, возникновение которых продиктовано потребностью истолкования результатов одного, в лучшем случае — нескольких частных экспериментов. 

Оптимисты требуют строгой общей теории стеклообразного состояния, пессимисты вообще исключают возможность её создания. 


Свойства стекла

Стекло — неорганическое изотропное вещество, материал, известный и используемый с древнейших времён. 

Существует и в природной форме, в виде минералов (обсидиан — вулканическое стекло), но в практие — чаще всего, как продукт стеклоделия — одной из древнейших технологий в материальной культуре. 

Структурно — аморфное вещество, агрегатно относящееся к разряду — твёрдое тело. 

В практике присутствует огромное число модификаций, подразумевающих массу разнообразных утилитарных возможностей, определяющихся составом, структурой, химическими и физическими свойствами. 


Независимо от их химического состава и температурной области затвердевания, стекло обладает физико-механическими свойствами твёрдого тела, сохраняя способность обратимого перехода из жидкого состояния в стеклообразное, и возможность кристаллизации (данное определение позволяет наблюдать, что фигурально к стёклам, в расширительном значении, относят все вещества по аналогии процесса образования и ряда формальных свойств — на сём она исчерпываться, поскольку материал, как известно, прежде всего характеризуется своими практическими качествами, которые и определяют более строгую детерминацию стёкол как таковых в материаловедении). 


Стёкла образуются в результате переохлаждения расплавов со скоростью, достаточной для предотвращения кристаллизации. 

Благодаря этому стёкла обычно длительное время сохраняют аморфное состояние. 

Неорганические расплавы, способные образовать стеклофазу, переходят в стеклообразное состояние при температурах ниже температуры стеклования Tg (при температурах свыше Tg аморфные вещества ведут себя как расплавы, то есть находятся в расплавленном состоянии). 


В настоящее время разработаны материалы чрезвычайно широкого, поистине — универсального диапазона применения, чему служат и присущие изначально (например, прозрачность, отражательная способность, стойкость к агрессивным средам, красота и многие другие) и не свойственные ранее стеклу — синтезированные его качества (например — жаростойкость, прочность, биоактивность, управляемая электропроводность и т. д.). 


Различные виды стёкол используется во всех сферах человеческой деятельности: от строительства, изобразительного искусства, оптики, медицины — до измерительной техники, высоких технологий и космонавтики, авиации и военной техники. Изучается физической химией и другими смежными и самостоятельными дисциплинами. 


Стекло может быть получено путём охлаждения расплавов, так чтобы избежать кристаллизации. 

Практически любое вещество из расплавленного состояния может быть переведено в стеклообразное состояние. 

Некоторые расплавы (как то — отдельных стеклообразующих веществ) не требуют для этого быстрого охлаждения. 

Однако некоторые вещества (такие как металлосодержащие расплавы) требуют очень быстрого охлаждения, чтобы избежать кристаллизации. 

Так, для получения металлических стёкол необходимы скорости охлаждения 100000—1000000 К/с. 

Стекло может быть получено также путём аморфизации кристаллических веществ, например бомбардировкой пучком ионов, или при осаждении паров на охлаждаемые подложки. 

Вязкость аморфных веществ — непрерывная функция температуры: чем выше температура, тем ниже вязкость аморфного вещества. 

Обычно расплавы стеклообразующих веществ имеют высокую вязкость по сравнению с расплавами нестеклообразующих веществ. 


Неорганические стёкла, благодаря полимерному строению могут становиться микрогетерогенным. 

Такие полимеры в стеклообразном состоянии приобретают индивидуальные качества, определяющие, в зависимости от характера этих структурных образований, на прозрачности и других свойствах стёкол. 

Присутствие в составе стекла соединений того или иного химического элемента, оксида металла, может определить его окраску, электропроводность, другие физические и химические свойства. 


В твёрдом состоянии силикатные стёкла весьма устойчивы к обычным реагентам (за исключением плавиковой кислоты), и к действию атмосферных факторов. 

На этом свойстве основано его применение для изготовления посуды, оконных стёкол, стеклоблоков и других строительных материалов. 


Для специальных целей выпускают химически-стойкое стекло, а также стекло, стойкое к тем или иным видам агрессивных воздействий.


История стекла

До сих пор не установлено достоверно, как и где впервые было получено стекло — существует несколько легенд, с той или иной степенью правдоподобия толкующих возможные предпосылки. Н. Н. Качалов воспроизводит одну из них, поведанную античным естествоиспытателем и историком Плинием Старшим (I век). 

Эта мифологическая версия гласит, что однажды финикийские купцы на песчаном берегу, за неимением камней, сложили очаг из перевозимой ими африканской соды — утром на месте кострища они обнаружили стеклянный слиток. 


Как бы то ни было, но долгое время первенство в открытии стеклоделия признавалось за Египтом, чему несомненным свидетельством считались глазурованные стеклом фаянсовые плитки внутренних облицовок пирамиды Джессера (середина III тысячелетия до н. э. ); к ещё более раннему периоду (первой династии фараонов) относятся находки фаянсовых украшений (см. выше), то есть стекло существовало в Египте уже 5 тысяч лет назад. 

Археология Двуречья, в особенности — Древних Шумера и Аккада, склоняет исследователей к тому, что немногим менее древними образцом стеклоделия следует считать памятник, найденный в Месопотамии в районе Ашнунака — цилиндрическую печать из прозрачного стекла, датиремую периодом династии Аккада, то есть возраст её — около четырёх с половиной тысяч лет. Бусина зеленоватого цвета диаметром около 9 мм, хранящаяся в Берлинском музее, считается одним из древнейших образцов стеклоделия. 

Найдена она была египтологом Флиндерсом Питри около Фив, по некоторым представлениям ей пять с половиной тысяч лет. Н. Н. Качалов отмечает, что на территории Старовавилонского царства археологи регулярно находят сосудики для благовоний местного происхождения, выполненные в той же технике, что и египетские. 

Учёный утверждает — есть все основания считать, «что в Египте и в странах Передней Азии истоки стеклоделия - отделяются от наших дней промежутком приблизительно в шесть тысяч лет». 


Диатрета. 

Вторая половина IV-го века. 

Стекло. 

Государственное античное собрание. 

Мюнхен

Египетские стеклоделы плавили стекло на открытых очагах в глиняных мисках. 

Спёкшиеся куски бросали раскалёнными в воду, где они растрескивались, и эти обломки, так называемые фритты, растирались в пыль жерновами и снова плавились. 

 

 





Метки к статье: стекло, глоссарий

Назад Вперед
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
ВВЕРХ
^ВВЕРХ